Roll No.

Total No. of Pages: 02

Total No. of Questions: 08

M.Tech. (CSE Engg.) (2018 Batch) (Sem.-1) ADVANCED DATA STRUCTURES

Subject Code: MTCS-102-18 M.Code: 75154

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1.Attempt any FIVE questions out of EIGHT questions.

2.Each question carries TWELVE marks.

1. a) Suppose you have a hash table of size 19, the keys are words, and the hash map is defined as follows: Each letter is assigned a number according to its position in the alphabet, i.e.

a	b	c	d	e	f	g	h	i	j	k	1	m	n	o	p	q	r	S	t	u	v	W	X	y	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

and the primary hash function is "x modulo 19", where x is the number corresponding to the first letter of the word. Why is this hash function not ideal?

b) Suppose instead you have a hash table of size 13 and the primary hash function is "x modulo 13", where x is the sum of the numbers corresponding to all the letters in the key word. Insert the following list of words into an initially empty hash table using linear probing:

[computer, science, in, birmingham, dates, back, to, the, sixties]

- c) What is the load factor of the resulting table, and how many collisions occurred?
- d) What is the effort (i.e. number of comparisons) involved in checking whether each of the following words are in the hash table: teaching, research, admin?
- e) Show what the resulting hash table would look like if direct chaining had been used rather than linear probing.

1 M- 75154

- 2. a) Draw the binary search tree that results from inserting the items [19, 30, 36, 10, 40, 25, 33] in that order into an initially empty tree.
 - b) Show how the tree rotation approach can be used to balance that tree?
 - c) Draw tree that results from deleting the item 30 from your balanced tree using the delete algorithm.
- 3. Let S, T_1 , T_2 be strings of lengths n, m_1 , m_2 with $m_1 + m_2$ 6 n. Your task is to locate whether the pattern T_1 , * T_2 (that is, T_1 followed by zero or more symbols followed by T_2) can be found in S.
 - a) Show by means of an example that there can be $\Theta(n2)$ different matches of $T_1 * T_2$ in S.
 - b) Supply an O(n2)-time algorithm to compute all matches of $T_1 * T_2$ in S_1
 - c) Supply an O(n)-time algorithm to decide whether there is any match of the pattern $T_1 * T_2$ in S.
- 4. a) Describe an algorithm of search operation on skip list.
 - b) Describe an algorithm of update operation on skip list.
 - c) Explain probabilistic analysis of skip list.
- 5. What are the two components in KMP Algorithm? Write the algorithm for both components along with example.
- 6. Calculate Time and Space emplexity of Priority Search Tree. Explain it's application.
- 7. Explain in detail receiverends in Trees for efficiently solving the problems.
- 8. Explain different cases of insertions and deletions in Red-Black trees with example.

2 | M- 75154